Flexible modeling of survival data with covariates subject to detection limits via multiple imputation

نویسندگان

  • Paul W. Bernhardt
  • Huixia Judy Wang
  • Daowen Zhang
چکیده

Models for survival data generally assume that covariates are fully observed. However, in medical studies it is not uncommon for biomarkers to be censored at known detection limits. A computationally-efficient multiple imputation procedure for modeling survival data with covariates subject to detection limits is proposed. This procedure is developed in the context of an accelerated failure time model with a flexible seminonparametric error distribution. The consistency and asymptotic normality of the multiple imputation estimator are established and a consistent variance estimator is provided. An iterative version of the proposed multiple imputation algorithm that approximates the EM algorithm for maximum likelihood is also suggested. Simulation studies demonstrate that the proposed multiple imputation methods work well while alternative methods lead to estimates that are either biased or more variable. The proposed methods are applied to analyze the dataset from a recently-conducted GenIMS study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accuracy evaluation of different statistical and geostatistical censored data imputation approaches (Case study: Sari Gunay gold deposit)

Most of the geochemical datasets include missing data with different portions and this may cause a significant problem in geostatistical modeling or multivariate analysis of the data. Therefore, it is common to impute the missing data in most of geochemical studies. In this study, three approaches called half detection (HD), multiple imputation (MI), and the cosimulation based on Markov model 2...

متن کامل

Multiple imputation based on restricted mean model for censored data.

Most multiple imputation (MI) methods for censored survival data either ignore patient characteristics when imputing a likely event time, or place quite restrictive modeling assumptions on the survival distributions used for imputation. In this research, we propose a robust MI approach that directly imputes restricted lifetimes over the study period based on a model of the mean restricted life ...

متن کامل

Spatial Modeling of Censored Survival Data

An important issue in survival data analysis is the identification of risk factors. Some of these factors are identifiable and explainable by presence of some covariates in the Cox proportional hazard model, while the others are unidentifiable or even immeasurable. Spatial correlation of censored survival data is one of these sources that are rarely considered in the literatures. In this paper,...

متن کامل

Epidemiologic Evaluation of Measurement Data in the Presence of Detection Limits

Quantitative measurements of environmental factors greatly improve the quality of epidemiologic studies but can pose challenges because of the presence of upper or lower detection limits or interfering compounds, which do not allow for precise measured values. We consider the regression of an environmental measurement (dependent variable) on several covariates (independent variables). Various s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational statistics & data analysis

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2014